應(yīng)yl7703永利官網(wǎng)張和平教授和徐守軍教授邀請(qǐng),西安交通大學(xué)yl7703永利官網(wǎng)學(xué)院魯紅亮教授將于2020年7月7日進(jìn)行線上學(xué)術(shù)報(bào)告。
報(bào) 告:On minimum degree thresholds for near perfect matchings in hypergraphs
時(shí) 間:7月7日下午5:00
騰訊會(huì)議ID:303948198會(huì)議密碼:0707
摘要:In this talk, we study degree conditions for the existence of large matchings in uniform hypergraphs. We prove that for integers $k,l,n$ with $k\ge 3$, $k/2<l<k$, and $n$ large, if $H$ is a $k$-uniform hypergraph on $n$ vertices and $\delta_{l}(H)>{n-l\choose k-l}-{(n-l)-(\lceil n/k \rceil-2)\choose 2}$, then $H$ has a matching covering all but a constant number of vertices. When $l=k-2$ and $k\ge 5$, such a matching is near perfect and our bound on $\delta_l(H)$ is best possible.
When $k=3$, with the help of an absorbing lemma of H\'{a}n, Person, and Schacht, our proof also implies that $H$ has a perfect matching (obtained by K\" uhn, Osthus, and Treglown and, independently, of Kahn.)
歡迎廣大師生參加!
報(bào)告人簡介
魯紅亮,2010年博士畢業(yè)于南開大學(xué)組合數(shù)學(xué)中心,現(xiàn)為西安交通大學(xué)yl7703永利官網(wǎng)教授、博士生導(dǎo)師,入選西安交通大學(xué)“青年拔尖人才支持計(jì)劃”(A類),先后主持三項(xiàng)國家自然科學(xué)基金項(xiàng)目,主要研究圖與超圖的匹配問題,解決了圖與超圖匹配領(lǐng)域的多個(gè)公開問題和猜想,在European J. Combin.、J. Graph Theory、SIAM J. Discrete Math.等期刊發(fā)表及接受發(fā)表研究論文近50篇。
甘肅省應(yīng)用數(shù)學(xué)與復(fù)雜系統(tǒng)重點(diǎn)實(shí)驗(yàn)室
yl7703永利官網(wǎng)
萃英學(xué)院
2020年7月6日