應(yīng)yl7703永利官網(wǎng)徐守軍教授和高毓平博士邀請(qǐng),美國伊利諾伊州立大學(xué)(Illinois State University)數(shù)學(xué)系助理教授鐔松齡將于2020年7月16日進(jìn)行線上學(xué)術(shù)報(bào)告。
報(bào)告題目:Antimagic orientation of graphs with minimum degree at least 33
報(bào)告時(shí)間:7月16日上午10:00
會(huì)議鏈接:https://meeting.tencent.com/s/Ad3ihqA0ugGY
騰訊會(huì)議ID:310764228
密碼:0716
報(bào)告摘要:An antimagic labeling of a directed graph $D$ with $n$ vertices and $m$ arcs is a bijection from the set of arcs of $D$ to the integers $\{1,\cdots,m\}$ such that all $n$ oriented vertex sums are pairwise distinct, where an oriented vertex sum is the sum of labels of all arcs entering that vertex minus the sum of labels of all arcs leaving it. A graph $G$ has an antimagic orientation if it has an orientation which admits an antimagic labeling. Hefetz, M{\"{u}}tze, and Schwartz conjectured that every connected graph admits an antimagic orientation. We show that every bipartite graph with no vertex of degree 0 or 2 admits an antimagic orientation and every graph $G$ with $\delta(G)\ge 33$ admits an antimagic orientation.
歡迎廣大師生參加!
報(bào)告人簡介
鐔松齡,美國伊利諾伊州立大學(xué)助理教授,主要研究方向?yàn)榻Y(jié)構(gòu)圖論、圖染色與極值圖論。鐔松齡于2015年從美國佐治亞州立大學(xué)獲得博士學(xué)位,2015-2018年在美國范德堡大學(xué)從事博士后研究工作。截止目前,在J. Combinatorial Theory Ser. B,J. Graph Theory等圖論與組合方向的頂級(jí)期刊發(fā)表高水平學(xué)術(shù)論文二十幾篇。
甘肅省應(yīng)用數(shù)學(xué)與復(fù)雜系統(tǒng)重點(diǎn)實(shí)驗(yàn)室
yl7703永利官網(wǎng)
萃英學(xué)院
2020年7月14日