亚洲国产午夜成人影院_日韩精品欧美大片资源在线观看网站_(凹凸影业)亚洲人成网站在线在线_无码高清在线观看少妇_一级毛片免费网站视频丿_婷婷五月综合色视频_菠萝菠萝蜜在线视频3_亚洲AV成人一区不卡_日韩一级生活毛片_国产精品亚洲手机版

歡迎進(jìn)入 yl7703永利官網(wǎng)

當(dāng)前位置: yl7703永利官網(wǎng) > 學(xué)術(shù)交流 > 正文

“九章講壇”第255講 — 張智民 教授

日期:2020-09-17點(diǎn)擊數(shù):

應(yīng)yl7703永利官網(wǎng)副院長鄧偉華教授的邀請,北京科學(xué)計算研究中心應(yīng)用與計算數(shù)學(xué)研究部主任張智民教授將于2020年9月20日進(jìn)行線上專題學(xué)術(shù)報告。

報告題目:H(curl curl)-conforming and H(grad curl)-conforming finite elements---beyond Nedelec

報告摘要:In his two ground breaking papers (1980 and 1986), Nedelec proposed H(curl)-conforming and H(div)-conforming elements to solve second-order electromagnetic equations that contains the “curl” and “div” operators. It is more or less as the $H^1$-conforming elements (or $C^0$ elements) for second-order elliptic equations that contains the $(grad)^2$ operator. As is well known in the finite element method literature, in order to solve 4th-order elliptic equations such as the bi-harmonic equation, $H^2$-conforming elements (or $C^1$-elements) were developed. Recent years, there have been some research in solving electromagnetic equations which involve $curl^4$ operator and $(curl grad)^2$ operator. Hence, construction of H(curl curl)-conforming and H(grad curl)-conforming elements becomes necessary. In this work, we report some recent development in this direction.

時 間:9月20日上午10:30.

地 點(diǎn):騰訊會議  ID:530888539

歡迎廣大師生光臨!


張智民教授簡介

張智民,教授,北京科學(xué)計算研究中心應(yīng)用與計算數(shù)學(xué)研究部主任。先后在美國德州理工大學(xué)(Texas Tech University)任客座助理教授(1991)、助理教授(1993)、副教授(1997),美國韋恩州立大學(xué)(Wayne State University)副教授(1999)、正教授(2002)、湖南師范大學(xué)瀟湘學(xué)者特聘教授(2003-2009),曾任和現(xiàn)任 Mathematics of Computation等9個國際計算數(shù)學(xué)雜志編委。發(fā)表SCI雜志學(xué)術(shù)論文 180 余篇,在國際學(xué)術(shù)會議大學(xué)報告包括世界華人數(shù)學(xué)家大會上做45分鐘邀請報告(2010),Ivo Babuska 90th生日學(xué)術(shù)會議12個報告人之一(2016,University of Texas at Austin).


甘肅省高校應(yīng)用數(shù)學(xué)與復(fù)雜系統(tǒng)省級重點(diǎn)實(shí)驗室

yl7703永利官網(wǎng)

萃英學(xué)院

2020年9月17日