應(yīng)yl7703永利官網(wǎng)鄭兵教授的邀請(qǐng),復(fù)旦大學(xué)大數(shù)據(jù)學(xué)院邵美悅研究員將于2020年10月15日-16日與我校有關(guān)師生進(jìn)行在線學(xué)術(shù)研討,并于10月15日下午舉行公開(kāi)學(xué)術(shù)報(bào)告。
報(bào)告 題目:Structure-preserving algorithms for solving the Bethe-Salpeter eigenvalue problem and computing the absorption spectrum
時(shí) 間:10月15日(星期四) 15:30
騰訊會(huì)議ID:179 421 723, 會(huì)議密碼:1015
報(bào)告摘要:
In a molecular system the excitation of an electron is obtained by solving the so-called Bethe--Salpeter equation (BSE).Discretization of the Bethe--Salpeter equation leads to a dense non-Hermitian matrix eigenvalue problem with a special 2-by-2 block structure.In principle all excitation energies, i.e., all positive eigenvalues of the BSE Hamiltonian, are of interest.This is challenging in practice because the dimension of the BSE Hamiltonian depends quadratically on the number of electrons in the system. We present a parallel structure preserving algorithm that computes all eigenpairs of the BSE Hamiltonian efficiently and accurately.In some circumstances, instead of computing each individual eigenpair, we need to compute the optical absorption spectrum, which is a frequency dependent matrix functional of the BSE Hamiltonian.We develop a Lanczos-type algorithm to efficiently compute the absorption spectrum without diagonalizing the BSE Hamiltonian.Parallel implementations of these algorithms are available in the software package BSEPACK.
歡迎廣大師生光臨!
邵美悅研究員簡(jiǎn)介
邵美悅,復(fù)旦大學(xué)大數(shù)據(jù)學(xué)院研究員,博導(dǎo)。2014年獲得瑞士洛桑聯(lián)邦理工學(xué)院計(jì)算數(shù)學(xué)博士學(xué)位,之后在美國(guó)勞倫斯伯克利國(guó)家實(shí)驗(yàn)室從事研究工作,先后擔(dān)任博士后研究員(2014-2017)和項(xiàng)目科學(xué)家(2017-2019),2019年5月進(jìn)入復(fù)旦大學(xué)工作。主要研究領(lǐng)域?yàn)閿?shù)值線性代數(shù)、高性能計(jì)算、以及量子力學(xué)計(jì)算,開(kāi)發(fā)了PDHSEQR、BSEPACK等大規(guī)模矩陣計(jì)算軟件包,相關(guān)研究成果發(fā)表在ACM TOMS,SIMAX,SISC,IEEE TPDS,JCTC,CPC等前沿刊物上。
甘肅省高校應(yīng)用數(shù)學(xué)與復(fù)雜系統(tǒng)省級(jí)重點(diǎn)實(shí)驗(yàn)室
yl7703永利官網(wǎng)
萃英學(xué)院
2020年10月13日