應(yīng)yl7703永利官網(wǎng)張國(guó)鳳教授和梁兆正博士邀請(qǐng),清華大學(xué)白峰杉教授,浙江大學(xué)黃正達(dá)教授,南通大學(xué)曹陽(yáng)教授將于2021年5月2日在線舉辦專題學(xué)術(shù)報(bào)告。
題目:作為科學(xué)范式的計(jì)算
時(shí)間:2021年5月2日(星期日)15:00
騰訊會(huì)議ID:372 143 964
報(bào)告摘要:數(shù)字的出現(xiàn)是人類文明的標(biāo)志之一,因此,數(shù)據(jù)當(dāng)然是古來(lái)有之。這里從歷史與文化的視角討論理解信息革命的背景,從科學(xué)范式的角度探討計(jì)算的邏輯。
報(bào)告人簡(jiǎn)介
白峰杉,清華大學(xué)教授、博士生導(dǎo)師。1989年畢業(yè)于清華大學(xué)應(yīng)用數(shù)學(xué)系,獲博士學(xué)位,1991年—1994年于英國(guó)Bath和美國(guó)Stanford大學(xué)攻讀博士后。主要研究方向?yàn)榇笠?guī)??茖W(xué)計(jì)算、數(shù)據(jù)挖掘、計(jì)算統(tǒng)計(jì)、數(shù)學(xué)軟件,曾任中國(guó)數(shù)學(xué)學(xué)會(huì)常務(wù)理事,計(jì)算數(shù)學(xué)學(xué)會(huì)常務(wù)理事,教育委員會(huì)主任委員,學(xué)術(shù)委員會(huì)委員,第三屆、第四屆、第十屆中美前沿科學(xué)討論會(huì)組委會(huì)委員,大學(xué)生數(shù)學(xué)建模組委會(huì)委員?,F(xiàn)任《數(shù)值計(jì)算與計(jì)算機(jī)應(yīng)用》編委,《數(shù)學(xué)建模及其應(yīng)用》編委,《高等學(xué)校計(jì)算數(shù)學(xué)學(xué)報(bào)》編委,《高等學(xué)校應(yīng)用數(shù)學(xué)學(xué)報(bào)》編委,教育部大學(xué)數(shù)學(xué)教學(xué)指導(dǎo)委員會(huì)副主任,中學(xué)生數(shù)學(xué)建模組委會(huì)副主任兼秘書長(zhǎng),(中學(xué)生)國(guó)際數(shù)學(xué)建模挑戰(zhàn)賽組委會(huì)委員。
-----------------------------------------------------------
題目:A Modified SSOR-like Preconditioner for Non-Hermitian Positive Definite Matrices
時(shí)間:2021年5月2日(星期日)16:00
騰訊會(huì)議ID:372 143 964
報(bào)告摘要:A modified SSOR-like (MSSOR-like) preconditioner is constructed for a non-Hermitian positive definite linear system with a dominant Hermitian part. The eigenvalue distribution of the MSSOR-like preconditioned matrix and the convergence property of the corresponding MSSOR-like iteration method are discussed in depth. Numerical experiments show that the MSSOR-like preconditioner can lead to a high-speed and effectively preconditioned GMRES, even when the dominant Hermitian part of the coefficient matrix is not so strong.
報(bào)告人簡(jiǎn)介
黃正達(dá),浙江省臨海市人,1992年于杭州大學(xué)數(shù)學(xué)系獲計(jì)算數(shù)學(xué)博士學(xué)位,現(xiàn)為浙江大學(xué)數(shù)學(xué)科學(xué)學(xué)院教授、博士生導(dǎo)師。浙江大學(xué)數(shù)學(xué)科學(xué)學(xué)院基礎(chǔ)課程教學(xué)研究中心主任。第十一屆、十二屆浙江省數(shù)學(xué)會(huì)理事。主要從事于數(shù)值代數(shù)領(lǐng)域的研究。在非線性方程(組)求解的Newton型方法的收斂性分析、多重網(wǎng)格分析、鞍點(diǎn)問(wèn)題、Sturm-Lliouville反問(wèn)題以及矩陣方程求解算法的研究中取得過(guò)一些成果。目前主持在研國(guó)家自然科學(xué)基金1項(xiàng),參與在研國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目1項(xiàng)。
-----------------------------------------------------------
題目:Cell-By-Cell Approximate Schur Complement Technique in Preconditioning of Meshfree Discretized Piezoelectric Equations
時(shí)間:2021年5月2日(星期日)17:00
騰訊會(huì)議ID:372 143 964
報(bào)告摘要:The radial point interpolation meshfree discretization is a very efficient numerical framework for the analysis of piezoelectricity, in which the fundamental electrostatic equations governing piezoelectric media are solved without mesh generation. Due to the mechanical-electrical coupling property and the piezoelectric constant, the discrete linear system is sparse, of generalized saddle point form and often very ill conditioned. In this talk, we propose a technique for constructing a family of cell-by-cell approximate Schur complement matrices, to be used in preconditioning to accelerate the convergence of Krylov subspace iteration methods for such problems. The approximate Schur complement matrices are simply constructed in the process of the meshfree discretization and have a sparse structure. It is proved that the so-constructed approximate Schur complement matrices are spectrally equivalent to the exact Schur complement matrix, which leads to very fast convergence when used in preconditioning. In addition, nondimensionalization of the piezoelectric equations is considered to make the computations more stable. The robustness and the efficiency of the proposed preconditioners is illustrated numerically on two test problems, arising from a piezoelectric strip shear deformation problem and a piezoelectric strip bending problem. Numerical results show that the number of iterations to achieve a given tolerance is independent of the number of degrees of freedom as well as of the various problem parameters.
報(bào)告人簡(jiǎn)介
曹陽(yáng),博士,教授,博士生導(dǎo)師,南通大學(xué)交通與土木工程學(xué)院副院長(zhǎng)。美國(guó)數(shù)學(xué)評(píng)論員,中國(guó)數(shù)學(xué)會(huì)會(huì)員,美國(guó)工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)會(huì)員,江蘇省青聯(lián)委員,南通市綜合交通運(yùn)輸學(xué)會(huì)常務(wù)理事。曾入選交通運(yùn)輸部“交通運(yùn)輸青年科技英才”、江蘇省“青藍(lán)工程”優(yōu)秀青年骨干教師和中青年學(xué)術(shù)帶頭人、江蘇省第五期“333工程”第三層次人才。主要研究方向?yàn)椋簲?shù)值代數(shù)、計(jì)算力學(xué)、智能交通、深度學(xué)習(xí)。主持國(guó)家自然科學(xué)基金2項(xiàng)、市廳級(jí)課題4項(xiàng);在Numerical Linear Algebra with Applications、IMA Journal of Numerical Analysis、 BIT、Numerical Algorithms、Journal of Computational Mathematics、 Journal of Optimization Theory and Applications、Engineering Analysis with Boundary Elements、 Acta Mechanica Sinica、Acta Mechanica Solida Sinica 等高水平期刊上發(fā)表論文50余篇;授權(quán)國(guó)家發(fā)明專利5件;獲得中國(guó)計(jì)算數(shù)學(xué)學(xué)會(huì)“應(yīng)用數(shù)值代數(shù)獎(jiǎng)”、中國(guó)自動(dòng)化學(xué)會(huì)科技進(jìn)步二等獎(jiǎng)、中國(guó)智能交通協(xié)會(huì)科學(xué)技術(shù)三等獎(jiǎng)、中國(guó)產(chǎn)學(xué)研合作創(chuàng)新成果二等獎(jiǎng)、江蘇省優(yōu)秀碩士學(xué)位論文、江蘇省優(yōu)秀博士學(xué)位論文等科研獎(jiǎng)勵(lì)。
甘肅省高校應(yīng)用數(shù)學(xué)與復(fù)雜系統(tǒng)重點(diǎn)實(shí)驗(yàn)室
yl7703永利官網(wǎng)
萃英學(xué)院
2021年4月30日