應(yīng)yl7703永利官網(wǎng)邀請(qǐng), 中山大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院畢寧教授將于2021年5月22日在城關(guān)校區(qū)西區(qū)學(xué)生活動(dòng)中心506會(huì)議室舉辦專題學(xué)術(shù)報(bào)告.
報(bào)告題目:The NSP for sparse vector recovery via minimization
時(shí) 間:2021年5月22日(星期六) 10:30-11:10
地 點(diǎn): 蘭州大學(xué)城關(guān)校區(qū)西區(qū)學(xué)生活動(dòng)中心506會(huì)議室
報(bào)告摘要:
In this talk, we focus on minimization model, i.e., investigating the nonconvex model,and provide a null space property of the measurement matrix such that a vector can be recovered from via minimization. The minimization model was first proposed by E. Esser, et al. [A Method for Finding Structured Sparse Solution to Nonnegative Least Squares Problems with Applications, SIAM J. Imag. Sci., 6(4) (2013), 2010–2046]. As a nonconvex model, it is well known that global minimizer and local minimizer are usually inconsistent. In this talk, we present a necessary and sufficient condition for the measurement matrix such that (1) a vector can be recovered from via local minimization; (2) any k-sparse vector can be recovered from via local minimization; (3) any k-sparse vector can be recovered from via .
畢寧教授簡(jiǎn)介
畢寧教授, 碩士、博士畢業(yè)于浙江大學(xué)?,F(xiàn)任中山大學(xué)數(shù)學(xué)學(xué)院教授, 博士生導(dǎo)師, 主要研究領(lǐng)域?yàn)楸平? 壓縮感知,小波分析、數(shù)值圖像水印技術(shù). 發(fā)表論文50余篇, 合作專著一部(多進(jìn)制小波分析)。作為主要成員完成國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目1項(xiàng);主持廣東省教育部產(chǎn)學(xué)研結(jié)合項(xiàng)目1項(xiàng);主持國(guó)家基金面上項(xiàng)目2項(xiàng)。多次獲得教育部、廣東省的自然科學(xué)獎(jiǎng)。
甘肅省高校應(yīng)用數(shù)學(xué)與復(fù)雜系統(tǒng)省級(jí)重點(diǎn)實(shí)驗(yàn)室
yl7703永利官網(wǎng)
蘭州大學(xué)萃英學(xué)院
2021年5月20日