報(bào)告人:朱睦正
時(shí)間:12月11日(周六)下午4:00-5:00
地點(diǎn):理工樓631
題目:On TDS-PCG Iteration Method with Circulant Preconditioners for Solving the Space Fractional Coupled Nonlinear Schr?dinger Equations
報(bào)告摘要:The goal of this paper is to solve the complex symmetric linear systems generated from the discretization of the space fractional coupled nonlinear Schr?dinger (CNLS) equations, whose coefficient matrix is equal to the sum of a symmetric positive definite Toeplitz matrix and a Hermitian positive definite complex diagonal matrix. In order to make the best use of the full Toeplitz structure of the coefficient matrix, a new Toeplitz and diagonal splitting (TDS) is given and the corresponding TDS iteration method is proposed to solve the discretized linear systems, then two circulant preconditioners based on Strang’s and T. Chan’s circulant approximation, are proposed to accelerate the convergence of the preconditioned conjugated gradient (PCG) method for solving the first linear sub-system in the TDS method. Theoretical analysis and numerical experiments demonstrate that the TDS method is unconditional convergence and the TDS-PCG inner-outer iteration method with two circulant preconditioners to solve the discretization linear systems of the space fractional CNLS equations is feasible and efficient.
報(bào)告人簡(jiǎn)介
朱睦正,博士,教授,河西學(xué)院yl7703永利官網(wǎng)副院長(zhǎng)。研究方向?yàn)椋簲?shù)值線性代數(shù)。近年來主持完成國(guó)家基金1項(xiàng),甘肅省教育廳科研項(xiàng)目1項(xiàng),河西學(xué)院科研項(xiàng)目2項(xiàng),校級(jí)重點(diǎn)課程建設(shè)項(xiàng)目1項(xiàng),教學(xué)研究項(xiàng)目1項(xiàng),發(fā)表高水平SCI論文20余篇。獲得甘肅省高等學(xué)??萍歼M(jìn)步三等獎(jiǎng)1項(xiàng)。
報(bào)告人:曾閩麗
時(shí)間:12月11日(周六)下午5:00-6:00
地點(diǎn):理工樓631
題目:The RSS-like iteration method for block two-by-two linear systems from time-periodic parabolic optimal control problems
報(bào)告摘要:We present a respectively scaled splitting-like (RSS-like) iteration method for block two-by-two linear systems from time-periodic parabolic optimal control problems. The detailed spectral properties of the RSS-like preconditioned matrix are analyzed and the unconditionally convergent properties of the RSS-like iteration method are described. Furthermore, we propose the optimal parameters of the RSS-like preconditioner. Numerical experiments are used to compare with some classical and recent efficient methods to show the efficiency of the new methods.
報(bào)告人簡(jiǎn)介
曾閩麗,博士,莆田學(xué)院數(shù)學(xué)與金融學(xué)院教授,華僑大學(xué)兼職碩士生導(dǎo)師。2017年入選福建省杰出青年培育計(jì)劃人選、獲莆田市“壺蘭英才”青年拔尖人才稱號(hào)。2018年獲莆田市“巾幗標(biāo)兵”、“美麗青年先鋒章”、“三八紅旗手”等榮譽(yù)稱號(hào)。主要研究方向?yàn)閿?shù)值線性代數(shù)、PDE優(yōu)化問題離散系統(tǒng)及分?jǐn)?shù)階偏微分方程結(jié)構(gòu)化離散系統(tǒng)的快速算法等。先后赴美國(guó)新奧爾良大學(xué)、英國(guó)伯明翰大學(xué)、澳門大學(xué)、中國(guó)科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院、南京大學(xué)合作訪問研究。先后主持國(guó)家基金3項(xiàng),福建省科技廳項(xiàng)目1項(xiàng),福建省教育廳中青年科研項(xiàng)目及校內(nèi)項(xiàng)目若干項(xiàng)。以第一作者在包括 Applied Mathematics and Computation、Computers and Mathematics with Applications、Journal of Computational and Applied Mathematics 等國(guó)際知名SCI期刊上發(fā)表論文近30篇。
甘肅應(yīng)用數(shù)學(xué)中心
甘肅省高校應(yīng)用數(shù)學(xué)與復(fù)雜系統(tǒng)省級(jí)重點(diǎn)實(shí)驗(yàn)室
yl7703永利官網(wǎng)
萃英學(xué)院
2021年12月10日