應(yīng)yl7703永利官網(wǎng)邀請(qǐng),美國(guó)加州大學(xué)Santa Cruz分校張宇飛將于2022年12月17日(星期六)進(jìn)行線上學(xué)術(shù)報(bào)告,歡迎廣大師生參加。
報(bào)告題目:Tensor Triangular Geometry with Application on the Category of Pseudo-coherent Complexes
中文題目:張量三角幾何及其在偽凝聚復(fù)形的范疇上的應(yīng)用
時(shí) 間: 2022年12月17日(星期六)10:30 – 11:30
騰訊會(huì)議 ID: 617-581-938 (密碼:202212)
報(bào)告摘要:Tensor-triangulated categories appear across the board of pure mathematics, such as stable homotopy theory, algebraic geometry, modular representations, and motivic theory. We will take a tour of tensor-triangulated categories and tensor triangular geometry. We will start with two examples from stable homotopy theory and algebraic geometry to appreciate the triangular and symmetric monoidal(tensor) structures, respectively. For specific tensor-triangulated categories, by associating each of them with a spectral space(the Balmer spectrum), the so-called tt-classification and, further, tt-geometry will be introduced. To be more specific, there will be a classification theorem that establishes a one-one correspondence between a class of subcategories of the tensor-triangulated category and a class of subsets of its Balmer spectrum. Finally, we will discuss its application to the derived category of pseudo-coherent complexes over a commutative noetherian ring. We may also mention a more "visible" example from quiver representation theory.
中文摘要:張量三角范疇廣泛地出現(xiàn)在包含穩(wěn)定同倫論、代數(shù)幾何、模表示論、母體同倫論等在內(nèi)的各個(gè)純數(shù)學(xué)領(lǐng)域,本次報(bào)告將介紹張量三角范疇和張量三角幾何。通過(guò)簡(jiǎn)單了解穩(wěn)定同倫論和代數(shù)幾何中的兩個(gè)例子,我們可以分別體會(huì)其中三角和幺半(張量)兩種結(jié)構(gòu)的作用。特定的張量三角范疇將會(huì)關(guān)聯(lián)到一個(gè)譜空間(即Balmer譜),我們將討論基于此種方法的張量三角分類和張量三角幾何。具體來(lái)說(shuō),我們會(huì)介紹一個(gè)分類定理,它給出了這樣的范疇的一類子范疇與其Balmer譜的一類子集之間的一一對(duì)應(yīng)。最后,我們將會(huì)討論這一理論在交換諾特環(huán)的導(dǎo)出范疇中偽凝聚復(fù)形構(gòu)成的全子范疇上的應(yīng)用。我們還可能有機(jī)會(huì)提及一個(gè)有關(guān)箭圖表示論的、更加淺顯易見(jiàn)的例子。
報(bào)告人簡(jiǎn)介
張宇飛,自2018年8月起至今在美國(guó)加州大學(xué)Santa Cruz 分校數(shù)學(xué)系讀博士學(xué)位,研究方向?yàn)榇鷶?shù)拓?fù)渑c代數(shù)幾何。
甘肅應(yīng)用數(shù)學(xué)中心
甘肅省高校應(yīng)用數(shù)學(xué)與復(fù)雜系統(tǒng)省級(jí)重點(diǎn)實(shí)驗(yàn)室
yl7703永利官網(wǎng)
萃英學(xué)院
2022年12月9日