亚洲国产午夜成人影院_日韩精品欧美大片资源在线观看网站_(凹凸影业)亚洲人成网站在线在线_无码高清在线观看少妇_一级毛片免费网站视频丿_婷婷五月综合色视频_菠萝菠萝蜜在线视频3_亚洲AV成人一区不卡_日韩一级生活毛片_国产精品亚洲手机版

歡迎進(jìn)入 yl7703永利官網(wǎng)

當(dāng)前位置: yl7703永利官網(wǎng) > 學(xué)術(shù)交流 > 正文

"九章講壇"第676講 — 顏棋 博士

日期:2023-04-28點擊數(shù):

應(yīng)yl7703永利官網(wǎng)邀請,中國礦業(yè)大學(xué)顏棋博士2023年5月4日作線上學(xué)術(shù)報告。

報告題目:Partial-dual genus polynomials and signed intersection graphs

時間:2023年5月4日(周四)16:30-17:30

地點:騰訊會議(會議ID: 339-903-792)

摘要:Recently, Gross, Mansour and Tucker introduced the partial- dual polynomial of a ribbon graph as a generating function that enumerates the partial duals of the ribbon graph by Euler genus. It is analogous to the extensively-studied polynomial in topological graph theory that enumerates by Euler genus all embeddings of a given graph. To investigate the partial-dual polynomial one only needs to focus on bouquets. In this talk, we shall further show that the partial-dual polynomial of a bouquet essentially depends on the signed intersection graph of the bouquet rather than on the bouquet itself. We then give a characterization of when a bouquet has a planar partial dual in terms of its signed intersection graph. Finally we consider a conjecture posed by Gross, Mansour and Tucker that there is no orientable ribbon graph whose partial-dual polynomial has only one non-constant term, this conjecture is false and we give a characterization of when all partial duals of a bouquet have the same Euler genus. (Joint work with Xian’an Jin)


報告人簡介

顏棋,廈門大學(xué)博士畢業(yè),中國礦業(yè)大學(xué)講師,碩士生導(dǎo)師。研究方向:拓?fù)鋱D論,主持國家自然科學(xué)基金(青年)項目一項,在《Forum Math. Sigma》、《Adv. in Appl. Math.》、《J. Combin. Theory Ser. A》、《European J. Combin.》等國內(nèi)外數(shù)學(xué)期刊上發(fā)表學(xué)術(shù)論文26余篇。


甘肅省高校應(yīng)用數(shù)學(xué)與復(fù)雜系統(tǒng)省級重點實驗室

甘肅應(yīng)用數(shù)學(xué)中心

萃英學(xué)院

yl7703永利官網(wǎng)

2023年4月28日