亚洲国产午夜成人影院_日韩精品欧美大片资源在线观看网站_(凹凸影业)亚洲人成网站在线在线_无码高清在线观看少妇_一级毛片免费网站视频丿_婷婷五月综合色视频_菠萝菠萝蜜在线视频3_亚洲AV成人一区不卡_日韩一级生活毛片_国产精品亚洲手机版

歡迎進入 yl7703永利官網(wǎng)

"九章講壇"第705講 — 阮士貴 教授

日期:2023-07-11點擊數(shù):

應yl7703永利官網(wǎng)李萬同教授和王智誠教授的邀請,美國邁阿密大學阮士貴教授將于2023年7月12日-17日訪問蘭州大學,期間于7月12日舉辦專題學術(shù)報告。

報告題目:Spatiotemporal Dynamics in Epidemic Models with Levy Flights: A Fractional Diffusion Approach

時 間:7月12日下午4:30

地 點:理工樓631

報告摘要:Recent field and experimental studies show that mobility patterns for humans exhibit scale-free nonlocal dynamics with heavy-tailed distributions characterized by Levy flights. To study the long-range geographical spread of infectious diseases, in this paper we propose a susceptible-infectious-susceptible epidemic model with Levy flights in which the dispersal of susceptible and infectious individuals follows a heavy-tailed jump distribution. Owing to the fractional diffusion described by a spectral fractional Neumann Laplacian, the nonlocal diffusion model can be used to address the spatiotemporal dynamics driven by the nonlocal dispersal. The primary focuses are on the existence and stability of disease-free and endemic equilibria and the impact of dispersal rate and fractional power on spatial profiles of these equilibria. A variational characterization of the basic reproduction number R0 is obtained and its dependence on the dispersal rate and fractional power is also examined. Then R0 is utilized to investigate the effects of spatial heterogeneity on the transmission dynamics. It is shown that R0 serves as a threshold for determining the existence and nonexistence of an epidemic equilibrium as well as the stabilities of the disease-free and endemic equilibria. In particular, for low-risk regions, both the dispersal rate and fractional power play a critical role and are capable of altering the threshold value. Numerical simulations were performed to illustrate the theoretical results. (Based on G. Zhao & S. Ruan, J. Math Pures Appl. 2023).

歡迎廣大師生光臨!


報告人簡介:

阮士貴,1992年獲得加拿大阿爾伯特大學數(shù)學系博士學位,隨后在國際著名的加拿大菲爾茲數(shù)學所做Junior Fellow、在麥克馬斯特大學做博士后。1994-2002在加拿大道爾豪斯大學數(shù)學與統(tǒng)計系先后任助理教授和副教授?,F(xiàn)為美國邁阿密大學數(shù)學系終身教授。主要研究領(lǐng)域是動力系統(tǒng)和微分方程及其在生物和醫(yī)學中的應用。在包括《PNAS》、《Lancet Infect.Dis.》、《Memoirs Amer.Math.Soc.》、《J.Math.Pures Appl.》、《Math.Ann.》等學術(shù)期刊發(fā)表了200多篇學術(shù)論文,受到了國內(nèi)外同行的關(guān)注與大量引用,2014和2015年連續(xù)被湯森路透集團列為全球高被引科學家。目前擔任重要學術(shù)期刊如《BMC Infectious Diseases》、《Bulletin of Mathematical Biology》(高級編委)、《Mathematical Biosciences》等雜志的編委。作為項目負責人多次獲得美國國家衛(wèi)生研究院(NIH)、美國國家科學基金(NSF)和中國國家自然科學基金多項資助。2013年獲得海外及港澳學者合作研究基金(原海外杰青)資助。


甘肅應用數(shù)學中心

甘肅省高校應用數(shù)學與復雜系統(tǒng)省級重點實驗室

yl7703永利官網(wǎng)

萃英學院

2023年7月10日