亚洲国产午夜成人影院_日韩精品欧美大片资源在线观看网站_(凹凸影业)亚洲人成网站在线在线_无码高清在线观看少妇_一级毛片免费网站视频丿_婷婷五月综合色视频_菠萝菠萝蜜在线视频3_亚洲AV成人一区不卡_日韩一级生活毛片_国产精品亚洲手机版

歡迎進(jìn)入 yl7703永利官網(wǎng)

當(dāng)前位置: yl7703永利官網(wǎng) > 學(xué)術(shù)交流 > 正文

"九章講壇"第774講 — 朱異 副教授

日期:2023-12-05點(diǎn)擊數(shù):

應(yīng)yl7703永利官網(wǎng)崔秀芳副教授和王躍循教授邀請(qǐng),華東理工大學(xué)數(shù)學(xué)學(xué)院朱異副教授將于2023年12月6日下午舉行線上學(xué)術(shù)報(bào)告。

報(bào)告題目: Global well-posedness of 2D incompressible MHD equations without magnetic diffusion

時(shí) 間:12月6日(星期三)14:00-15:00

騰訊會(huì)議ID:226-406-360

報(bào)告摘要:As we have known, the global existence of classical solutions to the Cauchy problem for 2D incompressible MHD equations without magnetic diffusion was proved previously, under the assumption that initial data is close to some equilibrium states. However, it is still unknown whether or not there exists a global classical solution to the above system with the assumption of initial data be small in non-negative Sobolev spaces. This talk gives a positive answer to this problem. In fact, we achieve our results in Sobolev space $H^2(\mathbb{R}^2)$. The key is using the structure of system to derive some equivalences for the wildest terms and improving the nonlinearity order, then we can transfer these wildest terms to some good terms successfully. This is a joint work with Prof. Ding Shijin and Prof. Ronghua Pan.

歡迎廣大師生光臨!


報(bào)告人簡(jiǎn)介

朱異,華東理工大學(xué)數(shù)學(xué)學(xué)院副教授。2017年博士畢業(yè)于復(fù)旦大學(xué),曾訪問美國(guó)佐治亞理工學(xué)院。主要從事偏微分方程的適定性理論方面的研究,特別是流體力學(xué)方程組如磁流體力學(xué)方程組、粘彈性力學(xué)方程組等。入選上海市“啟明星”計(jì)劃、上海市青年英才“揚(yáng)帆計(jì)劃”。主持國(guó)家自然科學(xué)基金面上項(xiàng)目、青年項(xiàng)目等基金。研究成果發(fā)表在Adv. Math.、ARMA、JFA、SIAM J. Math. Anal.等國(guó)際期刊。



甘肅應(yīng)用數(shù)學(xué)中心

甘肅省高校應(yīng)用數(shù)學(xué)與復(fù)雜系統(tǒng)省級(jí)重點(diǎn)實(shí)驗(yàn)室

yl7703永利官網(wǎng)

萃英學(xué)院

2023年12月5日