應(yīng)張和平教授和李秋麗副教授邀請(qǐng),閩南師范大學(xué)yl7703永利官網(wǎng)盧福良教授訪問我校并做學(xué)術(shù)報(bào)告如下。
報(bào)告題目:Removable edges in claw-free bricks
時(shí)間:12月21日下午15:00
地點(diǎn):城關(guān)校區(qū)理工樓401報(bào)告廳
報(bào)告摘要:An edge e in a matching covered graph G is removable if G-e is matching covered. Removable edges was introduced by Lovasz and Plummer in connection with ear decompositions of matching covered graphs. A brick is a non-bipartite matching covered graph without non-trivial tight cuts. The importance of bricks stems from the fact that they are building blocks of matching covered graphs. Lovasz proved that every brick other than K4 and C6 has a removable edge. It is known that every 3-connected claw-free graph with even number of vertices is a brick. In this talk, we will discuss the structure of adjacent non-removable edges. Moreover, we show that every claw-free brick G with more than 6 vertices has at least 5|V(G)|/8 removable edges.
歡迎廣大師生參加!
報(bào)告人簡(jiǎn)介
福建省閩江學(xué)者特聘教授。曾入選福建省百千萬人才工程。主要研究興趣是圖的匹配理論及相關(guān)問題,目前正在主持國家自然科學(xué)基金委面上項(xiàng)目一項(xiàng),省杰青項(xiàng)目。在J. Combin. Theory Ser. B,SIAM J. Discrete Math., Journal of Graph Theory,Electron. J. Comb.,Discrete Math.等雜志發(fā)表論文 30 余篇。
甘肅省應(yīng)用數(shù)學(xué)與復(fù)雜系統(tǒng)重點(diǎn)實(shí)驗(yàn)室
yl7703永利官網(wǎng)
萃英學(xué)院
2023年12月20日