應(yīng)yl7703永利官網(wǎng)李新華副教授邀請(qǐng),俄羅斯國(guó)立高等經(jīng)濟(jì)大學(xué)Olga Pochinka教授將于2024年9月2日至9月6日訪問(wèn)我校并作系列學(xué)術(shù)報(bào)告。
報(bào)告題目一:Classification of three-dimensional Pixton homeomorphisms
時(shí)間:2024年9月5日(星期四)上午9: 30-10: 30
地點(diǎn):大學(xué)生活動(dòng)中心506報(bào)告廳
報(bào)告題目二:The regular homeomorphisms on closed manifolds
時(shí)間:2024年9月5日(星期四)上午10: 30-11: 30
地點(diǎn):大學(xué)生活動(dòng)中心506報(bào)告廳
報(bào)告摘要:These two talks examine the so-called regular homeomorphisms on closed manifolds. The chain-recurrent set of such discrete dynamical systems consists of a finite number of hyperbolic periodic points and they are a generalization of Morse-Smale diffeomorphisms. We will study the embedding topology of their invariant manifolds, as well as their asymptotic behavior. Let’s make sure that regular homeomorphisms that do not have saddle points exist only on the sphere and all such homeomorphisms are pairwise topologically conjugate. Next, a complete topological classification of three-dimensional Pixton homeomorphisms - homeomorphisms with a single saddle orbit will be presented. The space of such homeomorphisms decomposes into a countable number of classes of topological conjugacy and the Hopf knot is a complete invariant for them. We show how an arbitrary Hopf knot is realized by a Pixton homeomorphism, in particular a homeomorphism with wildly embedded invariant manifolds of saddle points. An immediate consequence of the implementation will be the proof of the fact that the supporting manifold for Pixton homeomorphisms is a 3-sphere.
歡迎廣大師生屆時(shí)參加!
報(bào)告人簡(jiǎn)介
Olga Pochinka教授現(xiàn)任俄羅斯國(guó)立高等經(jīng)濟(jì)大學(xué)數(shù)學(xué)系教授,曾擔(dān)任俄羅斯國(guó)立高等經(jīng)濟(jì)大學(xué)下諾夫哥羅德校區(qū)基礎(chǔ)數(shù)學(xué)系系主任。她于2012年獲下諾夫哥羅德國(guó)立洛巴切夫斯基大學(xué)科學(xué)博士學(xué)位。曾主持多項(xiàng)俄羅斯科學(xué)基金。
Olga Pochinka教授是常規(guī)動(dòng)力系統(tǒng)理論和動(dòng)力學(xué)中拓?fù)浞椒I(lǐng)域的領(lǐng)軍人物之一。她在包括《Duke Math J》、《Selecta Mathematica》、《Izvestiya RAN》、《Survey in Math》、、《Results in Mathematics》、《Advances in Mathematics》等國(guó)際頂級(jí)數(shù)學(xué)和數(shù)學(xué)物理期刊上發(fā)表了100多篇論文,并撰寫(xiě)了關(guān)于動(dòng)力系統(tǒng)理論的專著2部。
甘肅應(yīng)用數(shù)學(xué)中心
甘肅省高校應(yīng)用數(shù)學(xué)與復(fù)雜系統(tǒng)省級(jí)重點(diǎn)實(shí)驗(yàn)室
yl7703永利官網(wǎng)
萃英學(xué)院
2024年8月27日