應(yīng)yl7703永利官網(wǎng)張和平教授和高毓平老師邀請,美國佐治亞州大學(xué)數(shù)學(xué)與統(tǒng)計系陳冠濤教授將于2021年5月9日作線上報告。
報 告:Optimization problems in Graph Edge Coloring
時 間:2021年5月9號20:00
地 點:ZOOM: 990698957 (密碼:523461)
摘 要:Graph edge coloring is a well established subject in the field of graph theory, it is one of the basic combinatorial optimization problems: color the edges of agraph Gwith as few colors as possible such that each edge receives a color andadjacent edges, that is,different edges incident to a common vertex, receive different colors. The minimum number of colors needed for such a coloring ofGis called thechromatic indexofG, writtenχ(G). By a result of Holyer, the determination of the chromatic index is anNP-hardoptimization problem. TheNP-hardness gives rise to the necessity of using heuristic algorithms. In particular, we are interested in upper bounds for the chromatic index that can be efficiently realized by a coloring algorithm. In this talk, we will start with the well-known Goldberg Seymour conjecture and its proof, then talk about the recent development of recoloring techniques and its applications to a number of classic problems in critical class 2 simple graphs.
歡迎廣大師生參加!
報告人簡介
陳冠濤,美國Georgia State University教授(the Regents’ Professor),數(shù)學(xué)與統(tǒng)計系系主任。主要研究方向為圖論及其應(yīng)用,著重研究圖的結(jié)構(gòu)、圖染色、Ramsey理論等,解決了圖論領(lǐng)域10余個著名猜想。近年來在圖染色領(lǐng)域取得重要突破,發(fā)展運用圖的邊重染色方法解決了該領(lǐng)域的數(shù)個經(jīng)典問題。在組合與圖論領(lǐng)域頂級期刊發(fā)表論文120余篇。任the SIAM Discrete Mathematics Active Group(2014-2016)項目主管,2011年以來任圖論組合權(quán)威期刊《Graphs and Combinatorics》執(zhí)行編委。
甘肅省應(yīng)用數(shù)學(xué)與復(fù)雜系統(tǒng)重點實驗室
yl7703永利官網(wǎng)
萃英學(xué)院
2021年5月6日