應(yīng)yl7703永利官網(wǎng)邀請(qǐng),維也納大學(xué)李建榮博士將于2022年10月29日舉辦線上學(xué)術(shù)講座,歡迎廣大師生參加。
報(bào)告題目:Quantum affine algebras and KLR algebras
時(shí)間:10月29日(周六)下午16:00—18:00
騰訊會(huì)議ID:837-692-289
會(huì)議鏈接:https://meeting.tencent.com/dm/3LS5djmSVnHp
報(bào)告摘要:Recently, Baumann-Kamnitzer-Knutson introduced a remarkable algebra morphism: \bar{D} from C[N] to the field of rational functions C(a_1, ..., a_n), where N is the unipotent radical of a simply laced complex algebraic group and a_i are simple roots, in their proof of a conjecture of Muthiah about MV basis of C[N]. The algebra C[N] and a larger algebra K_0(C^{\xi}) have monoidal categorifications using representations of quantum affine algebras introduced by Hernandez and Leclerc. We defined an algebra morphism D\tilde{D} from K_0(C^{\xi}) to C(a_1, ..., a_n) and proved that when restricts to C[N], \tilde{D} coincides with \bar{D}. Moreover, using \tilde{D} and \bar{D}, we can recover information of q-characters of representations of quantum affine algebras from ungraded characters of modules of KLR algebras and vice versa. This is joint work with Elie Casbi.
報(bào)告人簡(jiǎn)介
李建榮博士,從事量子仿射代數(shù)、叢代數(shù)和數(shù)學(xué)物理等方面的研究,曾在希伯來(lái)大學(xué)、威茲曼研究所、格拉茲大學(xué)等訪問(wèn)或做研究工作,曾主持和參與完成多項(xiàng)國(guó)家自然科學(xué)基金、海外基金,在JHEP、IMRN、Select Math.等國(guó)際著名期刊發(fā)表論文20余篇。
甘肅應(yīng)用數(shù)學(xué)中心
甘肅省應(yīng)用數(shù)學(xué)與復(fù)雜系統(tǒng)重點(diǎn)實(shí)驗(yàn)室
yl7703永利官網(wǎng)
萃英學(xué)院
2022年10月25日