應yl7703永利官網(wǎng)邀請,杭州師范大學劉思陽博士將于2024年1月12日做線上學術(shù)報告。
題目:Generalized frieze varieties associated with cluster automorphisms
時間:2024年1月12日下午17:00-18:30
報告地點:騰訊會議251-748-625,https://meeting.tencent.com/dm/nWKq48A0Xe9i
摘要:The frieze variety, introduced by Lee, Li, Mills, Schiffler and Seceleanu for providing a geometric interpretation of the acyclic quiver as well as concrete numerical invariants, is the smallest algebraic variety containing points obtained from the frieze pattern. Lee, Li, Mills, Schiffler and Seceleanu proved that the dimension of the frieze variety of an acyclic quiver is equal to 0, 1 or ≥ 2 if and only if the quiver is representation finite, tame, or wild, respectively. Igusa and Schiffler introduced a generalized version of the frieze variety. In this talk, we study the generalized frieze variety associated with a cluster automorphism. For affine quivers, we show every component of the frieze variety is a rational curve.
歡迎廣大師生光臨!
報告人簡介
劉思陽,博士畢業(yè)于浙江大學,現(xiàn)在在杭州師范大學任教。研究方向:代數(shù)與表示論,主要研究叢代數(shù)及其相關(guān)課題,研究內(nèi)容主要涉及箭圖的極大綠色序列與穩(wěn)定函數(shù)、叢自同構(gòu)以及叢代數(shù)的范疇化和組合問題。主要成果發(fā)表在《Journal of Algebra》等國際期刊上。正在主持國家自然科學基金青年項目。
甘肅應用數(shù)學中心
甘肅省高校應用數(shù)學與復雜系統(tǒng)省級重點實驗室
yl7703永利官網(wǎng)
萃英學院
2024年1月11日