亚洲国产午夜成人影院_日韩精品欧美大片资源在线观看网站_(凹凸影业)亚洲人成网站在线在线_无码高清在线观看少妇_一级毛片免费网站视频丿_婷婷五月综合色视频_菠萝菠萝蜜在线视频3_亚洲AV成人一区不卡_日韩一级生活毛片_国产精品亚洲手机版

歡迎進(jìn)入 yl7703永利官網(wǎng)

當(dāng)前位置: yl7703永利官網(wǎng) > 學(xué)術(shù)交流 > 正文

“九章講壇”第885講 — Alexey Kazakov 教授

日期:2024-08-29點(diǎn)擊數(shù):

應(yīng)yl7703永利官網(wǎng)楊璐教授邀請(qǐng),俄羅斯國立高等經(jīng)濟(jì)大學(xué)Alexey Kazakov教授將于2024年9月1日至9月6日訪問我校并作系列學(xué)術(shù)報(bào)告。

報(bào)告題目一:On pseudohyperbolic attractorsnotion and theory

時(shí)間:2024年9月6日(星期三)下午16: 00-17: 00

地點(diǎn):大學(xué)生活動(dòng)中心506報(bào)告廳

報(bào)告題目二:On pseudohyperbolic attractorsapplication and numerical methods

時(shí)間:2024年9月6日(星期三)下午17: 00-18: 00

地點(diǎn):大學(xué)生活動(dòng)中心506報(bào)告廳

報(bào)告摘要:One of the most fundamental problems in multidimensional chaos theory is the study of strange attractors which are robustly chaotic (i.e., they remain chaotic after small perturbations of the system). It was hypothesized that the robustness of chaoticity is equivalent to the pseudohyperbolicity of the attractor. Pseudohyperbolicity is a generalization of hyperbolicity. The main characteristic property of a pseudohyperbolic attractor is that each of its orbits has a positive maximal Lyapunov exponent. In addition, this property must be preserved under small perturbations. The foundations of the theory of pseudohyperbolic attractors were laid by Turaev and Shilnikov, who showed that the class of pseudohyperbolic attractors, besides the classical Lorenz and hyperbolic attractors, also includes wild attractors which contain orbits with a homoclinic tangency.

In this lectures, using the pseudohyperbolicity notion, we will explain how to check whether the attractor is robustly chaotic or not. We will describe the corresponding numerical methods and apply them for the study of model systems (the Lorenz, Lyubimov-Zaks, and Shimizu-Morioka systems) as well as systems arising in applications (optical laser model, model of thermal convection, ensembles of oscillators, etc.).

歡迎廣大師生屆時(shí)參加!


報(bào)告人簡介

Alexey Kazakov教授致力于非線性動(dòng)力學(xué)和混沌理論的研究,曾在2016年獲得Dmitry Zimin“Dynasty”基金會(huì)青年數(shù)學(xué)家競賽獎(jiǎng)項(xiàng),2018-2019年獲得俄羅斯基礎(chǔ)研究基金會(huì),2019-2020年獲得俄羅斯基礎(chǔ)研究基金會(huì),2019-2024年獲得俄羅斯基礎(chǔ)研究基金會(huì),2021年獲得俄羅斯尼日尼諾夫哥羅德州科學(xué)與高等教育部頒發(fā)的榮譽(yù)證書,其卓越工作和貢獻(xiàn)贏得了國際學(xué)術(shù)界的廣泛認(rèn)可。

Alexey Kazakov教授在非線性動(dòng)力學(xué)領(lǐng)域發(fā)表了大量高水平的科研論文,涵蓋了多個(gè)領(lǐng)域,其研究成果在Chaos、Nonlinearity、Commun. Nonlinear Sci. Numer. Simul.、Regul. Chaotic Dyn.等重要學(xué)術(shù)期刊上發(fā)表,并被廣泛引用。



甘肅應(yīng)用數(shù)學(xué)中心

甘肅省高校應(yīng)用數(shù)學(xué)與復(fù)雜系統(tǒng)省級(jí)重點(diǎn)實(shí)驗(yàn)室

yl7703永利官網(wǎng)

萃英學(xué)院

2024年8月27日