應(yīng)yl7703永利官網(wǎng)副院長(zhǎng)馬閃教授邀請(qǐng),倫敦帝國(guó)理工學(xué)院Dmitrii Mints博士將于2024年9月1日至9月6日訪(fǎng)問(wèn)我校并作系列學(xué)術(shù)報(bào)告。
報(bào)告題目一:Dynamics of maps with homoclic tangencies:classical results
時(shí)間:2024年9月5日(星期四)下午14: 30-15: 30
地點(diǎn):大學(xué)生活動(dòng)中心506報(bào)告廳
報(bào)告題目二:Dynamics of maps with homoclic tangencies:recent advances
時(shí)間:2024年9月6日(星期五)下午14: 30-15: 30
地點(diǎn):大學(xué)生活動(dòng)中心506報(bào)告廳
報(bào)告摘要:The major fact in the theory of dynamical systems is that structurally unstable maps can form open regions in the space of smooth maps. The simplest mechanism of destroying structural stability is a homoclinic tangency, i.e., a non-transverse intersection of the stable and unstable manifolds of a saddle periodic orbit. By the celebrated Newhouse Theorem, in the space of smooth maps there exist open regions (Newhouse domain) where maps with homoclinic tangencies are dense. Generically, maps from the Newhouse domain exhibit extremely complicated dynamics which includes coexistence of infinitely many sinks, superexponential growth of the number of periodic points, universal dynamics. In the lectures we will give an overview of classical results on the dynamics of maps from the Newhouse domain, as well as recent advances in this area.
歡迎廣大師生屆時(shí)參加!
報(bào)告人簡(jiǎn)介
Dmitrii Mints于2023年在俄羅斯國(guó)立高等經(jīng)濟(jì)學(xué)院獲得數(shù)學(xué)碩士學(xué)位,2023年至今在英國(guó)倫敦帝國(guó)理工學(xué)院就讀博士。他致力于隨機(jī)系統(tǒng)、動(dòng)力系統(tǒng)和混沌動(dòng)力學(xué)的研究,曾在Discrete Contin. Dyn. Syst.,Chaos等上發(fā)表多篇文章。
甘肅應(yīng)用數(shù)學(xué)中心
甘肅省高校應(yīng)用數(shù)學(xué)與復(fù)雜系統(tǒng)省級(jí)重點(diǎn)實(shí)驗(yàn)室
yl7703永利官網(wǎng)
萃英學(xué)院
2024年8月28日