應(yīng)張和平教授和李秋麗副教授邀請,閩南師范大學(xué)yl7703永利官網(wǎng)盧福良教授正在訪問我校,期間做第一場學(xué)術(shù)報(bào)告如下。
報(bào)告題目:The cubicverticesof solid minimal bricks
時(shí)間:4月6日下午15:00
地點(diǎn):城關(guān)校區(qū)理工樓631報(bào)告廳
報(bào)告摘要:A 3-connected graph is a brick if,for any two vertices $u$ and $v$, $G-u-v$ has a perfect matching. A brick $G$ is minimal if $G-e$ is not a brick for every edge $e$ of $G$. Norine and Thomas [J. Combin. Theory Ser. B, 96(4) (2006), pp. 505-513] conjectured that there exists $/alpha>0$ such that every minimal brick $G$ contains at least $/alpha/|V(G)/|$ cubic vertices. A brick is solidif for any two disjoint odd cycles $C_1$ and $C_2$, $G-V(C_1)/cup V(C_2)$ has no perfect matching. In this talk, I will report our recent result: the above conjecture holds for solid bricks.
歡迎廣大師生參加!
報(bào)告人簡介
福建省閩江學(xué)者特聘教授。曾入選福建省百千萬人才工程。主要研究興趣是圖的匹配理論及相關(guān)問題,目前正在主持國家自然科學(xué)基金委面上項(xiàng)目一項(xiàng),省杰青項(xiàng)目。在J. Combin. Theory Ser. B,SIAM J. Discrete Math., Journal of Graph Theory,Electron. J. Comb.,Discrete Math.等雜志發(fā)表論文 30 余篇。
甘肅省應(yīng)用數(shù)學(xué)與復(fù)雜系統(tǒng)重點(diǎn)實(shí)驗(yàn)室
yl7703永利官網(wǎng)
萃英學(xué)院
2023年4月5日